The regret of not modelling regret: a Monte Carlo investigation

Marco Boeri Alberto Longo Riccardo Scarpa

Gibson Institute for Land, Food and Environment and UKCRC Centre of Excellence for Public Health (NI)
Queen’s University Belfast

Third International Choice Modelling Conference 2013—3/5 July 2013, Sydney
Presentation Outline

Introduction
 Random Regret Minimization in MNL models
 Issues with RRM models
 What is this study’s aim

Methodology
 RUM and RRM models
 Monte Carlo experiment
 Indicators

Results
 MNL models
 Hybrid models

Conclusions and future work
 Conclusions
 Future Work
Introduction

Random Regret Minimization in MNL models
Issues with RRM models
What is this study’s aim

Methodology

RUM and RRM models
Monte Carlo experiment
Indicators

Results

MNL models
Hybrid models

Conclusions and future work

Conclusions
Future Work
Introduction

- The recent work by Chorus provides choice data analysts with an empirically tractable logit model of random regret minimization (RRM) choice behaviour in DCE.

- The model relaxes the assumption of utility maximization assuming that individuals aim to minimize their regret (defined as what one experiences when a non-chosen alternative performs better than the chosen one on one or more attributes).
Introduction

- The recent work by Chorus provides choice data analysts with an empirically tractable logit model of random regret minimization (RRM) choice behaviour in DCE.

- The model relaxes the assumption of utility maximization assuming that individuals aim to minimize their regret (defined as what one experiences when a non-chosen alternative performs better than the chosen one on one or more attributes).
RRM models: a growing literature

- RRM is immediately comparable with RUM models
- Its use is becoming increasingly popular in transportation, environmental economics and health economics
- A tutorial on RRM has recently been published by Chorus in 2012
- Nlogit includes now routines for estimating RRM models.
Issues with RRM models

- No optimal experimental design for RRM;
- Estimating only RUM or RRM is not enough if we have a mix in the sample;
- Not sure if hybrid models capture choice paradigms or heterogeneity or confound them;
- The major issue within the RRM approach is that it is not suitable for welfare analysis (work in progress).
What is this study’s aim

- With this paper we explore the empirical bias caused by estimating a multinomial logit (MNL) model assuming that the data conforms either to the RUM or to the RRM choice behaviour only, whilst the data presents a mixture of the two choice paradigms.

- More specifically it is focused on the bias caused by:
 - estimating only RUM on data with different proportions of regret minimizers;
 - estimating only RRM on data with different proportions of utility maximizers;
 - On a side and not fully explored... hybrid models: is the bias problem solved?
What is this study’s aim

- With this paper we explore the empirical bias caused by estimating a multinomial logit (MNL) model assuming that the data conforms either to the RUM or to the RRM choice behaviour only, whilst the data presents a mixture of the two choice paradigms.
- More specifically it is focused on the bias caused by:
 - estimating only RUM on data with different proportions of regret minimizers;
 - estimating only RRM on data with different proportions of utility maximizers;
 - On a side and not fully explored...
 hybrid models: is the bias problem solved?
What is this study’s aim

- With this paper we explore the empirical bias caused by estimating a multinomial logit (MNL) model assuming that the data conforms either to the RUM or to the RRM choice behaviour only, whilst the data presents a mixture of the two choice paradigms.
- More specifically it is focused on the bias caused by:
 - estimating only RUM on data with different proportions of regret minimizers;
 - estimating only RRM on data with different proportions of utility maximizers;
 - On a side and not fully explored... hybrid models: is the bias problem solved?
Introduction

Random Regret Minimization in MNL models
Issues with RRM models
What is this study’s aim

Methodology

RUM and RRM models
Monte Carlo experiment
Indicators

Results

MNL models
Hybrid models

Conclusions and future work

Conclusions
Future Work
Choice modeling under RUM

Starting from the generic Utility function (RUM - McFadden, 1974)

\[U_{nit} = V(\beta, \vec{x}_{nit}) + \epsilon_{nit}, \]

MNL models in this framework are:

\[\Pr_{nit}^{RU} = \frac{e^{\beta' \vec{x}_{nit}}}{\sum_{j=1}^{J} e^{\beta' \vec{x}_{njt}}}. \]
Choice modeling under RRM

The systematic part of anticipated regret is defined as:

\[R_{nit} = \sum_{j \neq i} \sum_{m=1}^{M} \ln \left(1 + \exp(\theta_m \delta_{ij}) \right), \text{ where } \delta_{ij} = x_{njmt} - x_{nmit}. \]

The derived logit choice probability based on regret (Chorus, 2010) is:

\[Pr_{nit}^{RR} = \frac{e^{-R_{nit}}}{\sum_{j=1}^{J} e^{-R_{njt}}}. \]
Design of Monte Carlo experiment

- We simulated 11 different data generating processes (DGP)
- For each DGP we simulate 1,000 samples of 493 individuals observed over 10 choices

The DGP for both RUM and RRM is based on Boeri et al. (2013): a study in health economics aimed at testing the trade-off that people are willing to make between life style choices, in terms of diet, physical activity, and the risk of dying from cardiovascular disease in the next 10 years.

Boeri et al. (2013):

The experiment

The simulated dataset is based on:

Table: Results from RUM-logit and RRM-logit models for real data; 4,930 observations

<table>
<thead>
<tr>
<th></th>
<th>RU</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>−0.0985</td>
<td>−0.0616</td>
</tr>
<tr>
<td>Increase in Physical Activity</td>
<td>0.0013</td>
<td>0.000816</td>
</tr>
<tr>
<td>Fat reduction</td>
<td>0.0024</td>
<td>0.0017</td>
</tr>
<tr>
<td>Risk of sheart attack in next 10 years</td>
<td>−0.0783</td>
<td>−0.0537</td>
</tr>
<tr>
<td>$\mathcal{L}(\hat{\beta})$</td>
<td>−5,280.37</td>
<td>−5,275.37</td>
</tr>
</tbody>
</table>
Indicators

We report 3 indicators of the bias of the estimations from the DGP:

- $\text{Bias}(\hat{\tau}) = 1/R \sum_{1}^{R} (\hat{\tau}^r - \tau)$;
- average of the absolute relative error: $\overline{RAE} = 1/R \sum_{1}^{R} |(\hat{\tau}^r - \tau) / \tau|$;
- fraction of $\hat{\tau}^r$ falling within 10% interval around the true value; $\Gamma_{0.05} = 1/R \sum_{1}^{R} d(\tau^r \in \tau \pm \tau \times 0.05)$

where:
R = number of samples simulated (1000)
τ is the true value and $\hat{\tau}^r$ is the rth value estimated in the experiment
d is an indicator function
Presentation Outline

Introduction
 Random Regret Minimization in MNL models
 Issues with RRM models
 What is this study’s aim

Methodology
 RUM and RRM models
 Monte Carlo experiment
 Indicators

Results
 MNL models
 Hybrid models

Conclusions and future work
 Conclusions
 Future Work
Impacts on estimates from a RUM-logit model

Parameters Bias

WTP Bias

10% Interval around real value
Impacts on estimates from a RRM-logit model

![Graphs showing MSE and RAE with varying RUM percentages]

![Graphs showing Bias and R'M interval with varying RUM percentages]
Impacts on estimates from a Hybrid model—RUM part

Parameters Bias

- cost
- fat
- exe
- risk

WTP Bias

- w_fat
- w_exe
- w_risk

10% Interval around real value

- cost
- fat
- exe
- risk

10% Interval around real value

- w_fat
- w_exe
- w_risk
Impacts on estimates from a Hybrid model—RRM part

MSE

RAE

Bias

ʻinterval
Presentation Outline

Introduction
- Random Regret Minimization in MNL models
- Issues with RRM models
- What is this study’s aim

Methodology
- RUM and RRM models
- Monte Carlo experiment
- Indicators

Results
- MNL models
- Hybrid models

Conclusions and future work
- Conclusions
- Future Work
Conclusions

This paper looked at how the presence of both RUM and RRM can bias results from DCE.

We found:

- The higher the proportion of regret minimizers in the sample the higher bias for RUM estimations.
- Within RRM bias decreases up to a point and then increases again increasing the proportion of regret minimizers in the sample.
- Interesting and conceptually counterintuitive: the bias is not as strong on willingness to pay estimates as it is found to be on parameter estimates.
Conclusions

- This paper looked at how the presence of both RUM and RRM can bias results from DCE

- We found:
 - The higher the proportion of regret minimizers in the sample the higher bias for RUM estimations
 - Within RRM bias decreases up to a point and then increases again increasing the proportion of regret minimizers in the sample
 => Design?
 - Interesting and conceptually counterintuitive: the bias is not as strong on willingness to pay estimates as it is found to be on parameter estimates.
Conclusions

• This paper looked at how the presence of both RUM and RRM can bias results from DCE

• We found:

 • The higher the proportion of regret minimizers in the sample the higher bias for RUM estimations
 • Within RRM bias decreases up to a point and then increases again increasing the proportion of regret minimizers in the sample
 => Design?
 • Interesting and conceptually counterintuitive: the bias is not as strong on willingness to pay estimates as it is found to be on parameter estimates.
Conclusions

- This paper looked at how the presence of both RUM and RRM can bias results from DCE.

- We found:
 - The higher the proportion of regret minimizers in the sample the higher bias for RUM estimations.
 - Within RRM bias decreases up to a point and then increases again increasing the proportion of regret minimizers in the sample.

 => Design?

- Interesting and conceptually counterintuitive: the bias is not as strong on willingness to pay estimates as it is found to be on parameter estimates.
Conclusions

- This paper looked at how the presence of both RUM and RRM can bias results from DCE

- We found:
 - The higher the proportion of regret minimizers in the sample the higher bias for RUM estimations
 - Within RRM bias decreases up to a point and then increases again increasing the proportion of regret minimizers in the sample
 - Interesting and conceptually counterintuitive: the bias is not as strong on willingness to pay estimates as it is found to be on parameter estimates.
Conclusions

- This paper looked at how the presence of both RUM and RRM can bias results from DCE

- We found:

 - The higher the proportion of regret minimizers in the sample the higher bias for RUM estimations
 - Within RRM bias decreases up to a point and then increases again increasing the proportion of regret minimizers in the sample

 => Design?

- **Interesting and conceptually counterintuitive:**
 the bias is not as strong on willingness to pay estimates as it is found to be on parameter estimates.
Conclusions

We also found:

- Hybrid models (assuming we know who uses RRM ad who RUM) can help reducing this bias for RUM
- It does not work as well on RRM models (design?)
Conclusions

We also found:

- Hybrid models (assuming we know who uses RRM ad who RUM) can help reducing this bias for RUM
- It does not work as well on RRM models (design?)
Future Work

- Derive (develop) welfare measures within RRM
- Work on a better design for SP data analysis
- Understand better how hybrid models in practice (LC) can help with the bias
- Work with RP data in the same directions
- Experimental economics (can RRM help?)
Thank you for your attention!!!

Acknowledgements:
Funding for this research was provided by the UKCRC, grant number RES-590-28-0001. A special THANKS to the staff at the Centre of Excellence for Public Health (Belfast) for making this research (and this trip) possible for me.
Questions???

Contact information:

Marco Boeri
Gibson Institute for Land, Food and Environment, Queen’s University Belfast.
Email: m.boeri@qub.ac.uk.
www.qub.ac.uk/sites/GibsonInstitute/